Soalnomor 1 simak ui matematika dasar KD1 tahun 2014 tergolong mudah karena hanya menggunakan konsep turunan pecahan, sehingga saya yakin setiap peserta bisa mengerjakan soal ini. Untuk nomor 2 menggunakan konsep fungsi komposisi, untuk mengerjakannya butuh ketelitian dan trik. Konsep peluang juga dipakai untuk soal nomor 3 dan 4, akan tetapi soal
SIMAK UI 2016-Saya kehabisan kata-kata nih buat pengantar postingan ini, hehehe....! So... To the point aja ya..! Berikut ini adalah Soal dan Pembahasan Matematika Dasar TKPA SIMAK UI 2016, seperti biasa b4ngrp selalu menyertakan soal dalam bentuk file yang dapat di download dan diprint sepuasnya. Ingat, berusahalah terlebih dahulu menjawab soal-soal tersebut dengan mandiri. Abis tuh bolehlah di intip-intip pembahasannya disini untuk mencocokkan jawaban kalian ya..! Oh iya, jika pada pembahasan ini ada yang kurang tepat mohon dikoreksi melalui kolom komentar ya...! Dan yang paling penting supaya b4ngrp tetap semangat mengembangkan blog ini, mohon bantuannya untuk share postingan ini ya..! Terima kasih. Matematika Dasar SIMAK UI 2016 No. 1 Bentuk sederhana dari ekspresi $\sqrt[3]{4}{{\left \sqrt[3]{\frac{9}{16}}-\sqrt[3]{\frac{3}{16}}+\sqrt[3]{\frac{1}{16}} \right}^{-1}}$ adalah … A. $\sqrt[3]{4}+1$ B. $\frac{\sqrt[3]{4}+1}{\sqrt[3]{3}}$ C . $\sqrt[3]{3}+1$ D. $\frac{\sqrt[3]{3}+1}{\sqrt[3]{4}}$ E. $\frac{\sqrt[3]{3}+1}{4}$ Pembahasan $\sqrt[3]{4}{{\left \sqrt[3]{\frac{9}{16}}-\sqrt[3]{\frac{3}{16}}+\sqrt[3]{\frac{1}{16}} \right}^{-1}}$ = $\frac{\sqrt[3]{4}}{\sqrt[3]{\frac{9}{16}}-\sqrt[3]{\frac{3}{16}}+\sqrt[3]{\frac{1}{16}}}$ = $\frac{\sqrt[3]{4}}{\frac{\sqrt[3]{9}-\sqrt[3]{3}+\sqrt[3]{1}}{\sqrt[3]{16}}}$ = $\sqrt[3]{4}\times \frac{\sqrt[3]{16}}{\sqrt[3]{9}-\sqrt[3]{3}+\sqrt[3]{1}}$ = $\frac{\sqrt[3]{64}}{\sqrt[3]{9}-\sqrt[3]{3}+\sqrt[3]{1}}$ = $\frac{4}{\sqrt[3]{9}-\sqrt[3]{3}+1}\times \frac{\sqrt[3]{3}+1}{\sqrt[3]{3}+1}$ = $\frac{4\left \sqrt[3]{3}+1 \right}{3+\sqrt[3]{9}-\sqrt[3]{9}-\sqrt[3]{3}+\sqrt[3]{3}+1}$ = $\frac{4\left \sqrt[3]{3}+1 \right}{4}$ = $\sqrt[3]{3}+1$ Jawaban C Matematika Dasar SIMAK UI 2016 No. 2 Jika $a$, $b$, dan $x$ bilangan real positif yang berbeda dengan 1 dan ${}^{a}\log x$ bilangan rasional, maka $9{{\left {}^{a}\log x \right}^{2}}+8{{\left {}^{b}\log x \right}^{2}}=18\left {}^{a}\log x \right\left {}^{b}\log x \right$ berlaku … A. untuk semua nilai $a$, $b$, dan $x$. B. jika dan hanya jika ${{a}^{2}}={{b}^{3}}$. C. jika dan hanya jika ${{a}^{3}}={{b}^{4}}$ D. jika dan hanya jika ${{a}^{3}}={{b}^{2}}$ atau ${{a}^{3}}={{b}^{4}}$. E. jika dan hanya jika ${{a}^{2}}={{b}^{3}}$ atau ${{a}^{4}}={{b}^{3}}$. Pembahasan Misal ${}^{a}\log x=p$ dan ${}^{b}\log x=q$ maka $9{{\left {}^{a}\log x \right}^{2}}+8{{\left {}^{b}\log x \right}^{2}}=18\left {}^{a}\log x \right\left {}^{b}\log x \right$ $9{{p}^{2}}+8{{q}^{2}}=18pq$ $9{{p}^{2}}-18pq+8{{q}^{2}}=0$ $9{{p}^{2}}-18pq+8{{q}^{2}}=0$ $3p-2q3p-4q=0$ $3p=2q$ atau $3p=4q$ * Untuk $3p=2q$ $3.{}^{a}\log x=2.{}^{b}\log x$ ${}^{{{a}^{\frac{1}{3}}}}\log x={}^{{{b}^{\frac{1}{2}}}}\log x$ ${{a}^{\frac{1}{3}}}={{b}^{\frac{1}{2}}}$ ${{\left {{a}^{\frac{1}{3}}} \right}^{6}}={{\left {{b}^{\frac{1}{2}}} \right}^{6}}\Leftrightarrow {{a}^{2}}={{b}^{3}}$ * Untuk $3p=4q$ $3.{}^{a}\log x=4.{}^{b}\log x$ ${}^{{{a}^{\frac{1}{3}}}}\log x={}^{{{b}^{\frac{1}{4}}}}\log x$ ${{a}^{\frac{1}{3}}}={{b}^{\frac{1}{4}}}$ ${{\left {{a}^{\frac{1}{3}}} \right}^{12}}={{\left {{b}^{\frac{1}{4}}} \right}^{12}}\Leftrightarrow {{a}^{4}}={{b}^{3}}$ Jawaban E Matematika Dasar SIMAK UI 2016 No. 3 Jika akar ${{x}^{2}}+ax+b=0$ adalah $\frac{1}{3}$ kali akar ${{x}^{2}}+cx+a=0$ dengan $a,b,c\ne 0$, maka $\frac{a+c}{b}$ = … A. $\frac{10}{27}$ B. $\frac{28}{9}$ C. 30 D. 36 E. 40 Pembahasan ${{x}^{2}}+ax+b=0$ akar-akarnya ${{x}_{1}}$ dan ${{x}_{2}}$ maka ${{x}_{1}}+{{x}_{2}}=-a$ ${{x}_{1}}.{{x}_{2}}=b$ ${{x}^{2}}+cx+a=0$ akar-akarnya ${{x}_{1}}$ dan ${{x}_{2}}$ maka ${{x}_{3}}+{{x}_{4}}=-c$ ${{x}_{3}}.{{x}_{4}}=a$ akar ${{x}^{2}}+ax+b=0$ adalah $\frac{1}{3}$ kali akar ${{x}^{2}}+cx+a=0$ maka ${{x}_{1}}=\frac{1}{3}{{x}_{3}}$ dan ${{x}_{2}}=\frac{1}{3}{{x}_{4}}$ ${{x}_{1}}+{{x}_{2}}=\frac{1}{3}{{x}_{3}}+\frac{1}{3}{{x}_{4}}$ ${{x}_{1}}+{{x}_{2}}=\frac{1}{3}{{x}_{3}}+{{x}_{4}}$ $-a=\frac{1}{3}-c\Leftrightarrow c=3a$ ${{x}_{1}}.{{x}_{2}}=\frac{1}{3}{{x}_{3}}.\frac{1}{3}{{x}_{4}}$ ${{x}_{1}}.{{x}_{2}}=\frac{1}{9}{{x}_{3}}.{{x}_{4}}$ $b=\frac{1}{9}a\Leftrightarrow a=9b$ $\frac{a+c}{b}=\frac{9b+3a}{b}=\frac{9b+ Jawaban D Matematika Dasar SIMAK UI 2016 No. 4 Diketahui bahwa $c$ dan $d$ solusi ${{x}^{2}}+ax+b=0$, $a$ dan $b$ solusi ${{x}^{2}}+cx+d=0$ dengan nilai $a$, $b$, $c$, dan $d$ bilangan real bukan nol. Nilai $a+b+c+d$ = … A. -2 B. -1 C. 1 D. 2 E. 3 Pembahasan ${{x}^{2}}+ax+b=0$ dan ${{x}^{2}}+cx+d=0$ maka ${{x}^{2}}+ax+b={{x}^{2}}+cx+d$ $ax+b=cx+d$ $a=c$ dan $b=d$ ${{x}^{2}}+ax+b=0$ akar-akarnya c dan d maka $c+d=-a$ $a+d=-a\Leftrightarrow d=-2a$ $ c=1=a$ $d=-2a\Leftrightarrow d= b=d=-2$ $a+b+c+d=1+-2+1+-2=-2$ Jawaban A Matematika Dasar SIMAK UI 2016 No. 5 Jika $x$ memenuhi $\frac{-3x+1}{{{x}^{2}}-6x-16}\ge 0$, maka nilai $y=-\frac{2}{x}+1$ terletak pada …. A. $-5\le y 2$ C. $y\le -3$ atau $y > \frac{3}{4}$ D. $-5\le y 0$ maka $x=\frac{2}{3}$ substitusi ke $4-4r={{x}^{2}}$ $4-4r={{\left \frac{2}{3} \right}^{2}}$ $-4r=\frac{4}{9}-4$ $-4r=\frac{-32}{9}\Leftrightarrow r=\frac{8}{9}$ L = 2 x luas lingkaran r = $\frac{8}{9}$ + luas lingkaran r = 1. $L=2\pi {{\left \frac{8}{9} \right}^{2}}+\pi {{.1}^{2}}$ $L=\frac{128}{81}\pi +\pi $ $L=\frac{209}{81}\pi $ Jawaban D Gunakan petunjuk C dalam menjawab soal nomor 13 sampai nomor 15. Matematika Dasar SIMAK UI 2016 No. 13 Diketahui $fx={{x}^{2}}+3$ dan $gx=\sqrt{x-3}$. Pernyataan berikut yang BENAR adalah … 1 $g$ merupakan invers dari $f$ 2 daerah hasil dari $f\circ g$ adalah himpunan bilangan real. 3 daerah asal dari $f$ sama dengan daerah hasil dari $g$. 4 daerah asal dari $g\circ f$ sama dengan daerah asal dari $f$. Pembahasan Pernyataan 1 $fx={{x}^{2}}+3$ ${{x}^{2}}+3=y$ ${{x}^{2}}=y-3$ $x=\sqrt{y-3}$ ${{f}^{-1}}x=\sqrt{x-3}=gx$. Pernyataan 1 benar. Pernyataan 2 $f\circ g={{\left \sqrt{x-3} \right}^{2}}+3=x$ maka daerah hasilnya adalah himpunan bilangan real. Pernyataan 2 benar. Pernyataan 3 $Df=\{xx\in R\}$ dan $Rg=\{xx\in R\}$. Pernyataan 3 benar. Pernyataan 4 $g\circ f=\sqrt{{{x}^{2}}+3-3}=x$ maka $Dg\circ f=\{xx\in R\}$ dan $Df=\{xx\in R\}$. Pernyataan 4 benar. Jawaban E 1, 2, 3, 4 benar Matematika Dasar SIMAK UI 2016 No. 14 Jika $fx=\left\{ \begin{matrix} 2-{{x}^{2}}, & -3\le x\le 0 \\ {{x}^{2}}+2, & 0\le x\le 3 \\ \end{matrix} \right.$, maka … 1 $f'-2+f'2=8$ 2 $fx$ simetris terhadap sumbu-y 3 persamaan garis singgung di titik $P-2,-2$ dan $Q2,6$ adalah sejajar. 4 $fx={{f}^{-1}}x$ Pembahasan Pernyataan 1 Untuk $x=-2$ maka $fx=2-{{x}^{2}}$ $f'x=-2x\Leftrightarrow f'-2=4$ Untuk $x=2$ maka $fx={{x}^{2}}+2$ $f'x=2x\Leftrightarrow f'2=4$ $f'-2+f'2=4+4=8$. Pernyataan 1 benar. Pernyataan 2 $fx=a{{x}^{2}}+bx+c$ simetri terhadap sumbu-Y jika $b=0$. $fx=2-{{x}^{2}}$ dan $fx={{x}^{2}}+2$ memiliki $b=0$ maka $fx$ simetri terhadap sumbu-Y. Pernyataan 2 benar. Pernyataan 3 Persamaan garis singgung di titik $P-2,-2$ adalah $y+2=f'-2.x+2$ $y+2=4x+2$ $y=4x+6\Rightarrow {{m}_{1}}=4$ Persamaan garis singgung di titik $Q2,6$ adalah $y-6=f'2.x-2$ $y-6=4x-2$ $y=4x-2\Rightarrow {{m}_{2}}=4$ ${{m}_{1}}={{m}_{2}}=4$ maka kedua garis singgung sejajar. Pernyataan 3 benar. Pernyataan 4 $fx=2-{{x}^{2}}\Leftrightarrow {{f}^{-1}}x=\sqrt{2-x}$ $fx={{x}^{2}}+2\Leftrightarrow {{f}^{-1}}x=\sqrt{x-2}$ Maka $fx\ne {{f}^{-1}}x$. Pernyataan 4 salah. Jawaban A 1, 2, dan 3 benar. Matematika Dasar SIMAK UI 2016 No. 15 Jika data pada tabel menunjukkan nilai rata-rata ujian siswa di sekolah A dan B, maka … 1 siswa laki-laki di sekolah A lebih banyak daripada siswa perempuan di sekolah tersebut. 2 siswa laki-laki di sekolah B lebih banyak daripada siswa perempuan di sekolah tersebut. 3 siswa laki-laki di sekolah A lebih banyak daripada siswa laki-laki di sekolah B. 4 nilai rata-rata ujian siswa perempuan di sekolah A dan B adalah 84. Pembahasan Pernyataan 1 Sekolah A, misalkan ${{n}_{1}}$ = banyak siswa laki-laki di sekolah A ${{n}_{2}}$ = banyak siswa perempuan di sekolah A ${{\bar{x}}_{1}}=71$, ${{\bar{x}}_{2}}=76$, ${{\bar{x}}_{1,2}}=74$ ${{\bar{x}}_{1,2}}=\frac{{{n}_{1}}.{{{\bar{x}}}_{1}}+{{n}_{2}}.{{{\bar{x}}}_{2}}}{{{n}_{1}}+{{n}_{2}}}$ $74=\frac{71{{n}_{1}}+76{{n}_{2}}}{{{n}_{1}}+{{n}_{2}}}$ $74{{n}_{1}}+74{{n}_{2}}=71{{n}_{1}}+76{{n}_{2}}$ $3{{n}_{1}}=2{{n}_{2}}\Leftrightarrow \frac{{{n}_{1}}}{{{n}_{2}}}=\frac{2}{3}$ Artinya, siswa laki-laki di sekolah A lebih sedikit daripada siswa perempuan di sekolah tersebut. Pernyataan 1 salah. Pernyataan 2 Sekolah B, misalkan ${{n}_{3}}$ = banyak siswa laki-laki di sekolah B ${{n}_{4}}$ = banyak siswa perempuan di sekolah B ${{\bar{x}}_{3}}=81$, ${{\bar{x}}_{4}}=90$, ${{\bar{x}}_{3,4}}=84$ ${{\bar{x}}_{3,4}}=\frac{{{n}_{3}}.{{{\bar{x}}}_{3}}+{{n}_{4}}.{{{\bar{x}}}_{4}}}{{{n}_{3}}+{{n}_{4}}}$ $84=\frac{81{{n}_{3}}+90{{n}_{4}}}{{{n}_{3}}+{{n}_{4}}}$ $84{{n}_{3}}+84{{n}_{4}}=81{{n}_{3}}+90{{n}_{4}}$ $3{{n}_{3}}=6{{n}_{4}}\Leftrightarrow \frac{{{n}_{3}}}{{{n}_{4}}}=\frac{2}{1}$ Artinya, siswa laki-laki di sekolah B lebih banyak daripada siswa perempuan di sekolah tersebut. Pernyataan 2 benar. Pernyataan 3 Siswa laki-laki di sekolah A dan B ${{\bar{x}}_{1}}=71$, ${{\bar{x}}_{3}}=81$, ${{\bar{x}}_{1,3}}=79$ ${{\bar{x}}_{1,3}}=\frac{{{n}_{1}}.{{{\bar{x}}}_{1}}+{{n}_{3}}.{{{\bar{x}}}_{3}}}{{{n}_{1}}+{{n}_{3}}}$ $79=\frac{71{{n}_{1}}+81{{n}_{3}}}{{{n}_{1}}+{{n}_{3}}}$ $79{{n}_{1}}+79{{n}_{3}}=71{{n}_{1}}+81{{n}_{3}}$ $8{{n}_{1}}=2{{n}_{3}}\Leftrightarrow \frac{{{n}_{1}}}{{{n}_{3}}}=\frac{1}{4}$ Artinya, siswa laki-laki di sekolah A lebih sedikit daripada siswa laki-laki di sekolah B. Pernyataan 3 salah. Pernyataan 4 Siswa perempuan di sekolah A dan B Ingat $\frac{{{n}_{1}}}{{{n}_{2}}}=\frac{2}{3}\Leftrightarrow {{n}_{2}}=\frac{3{{n}_{1}}}{2}$ $\frac{{{n}_{3}}}{{{n}_{4}}}=\frac{2}{1}\Leftrightarrow {{n}_{4}}=\frac{{{n}_{3}}}{2}$ $\frac{{{n}_{1}}}{{{n}_{3}}}=\frac{1}{4}\Leftrightarrow {{n}_{3}}=4{{n}_{1}}$ ${{\bar{x}}_{2}}=76$, ${{\bar{x}}_{4}}=90$, ${{\bar{x}}_{2,4}}=x$ ${{\bar{x}}_{2,4}}=\frac{{{n}_{2}}.{{{\bar{x}}}_{2}}+{{n}_{4}}.{{{\bar{x}}}_{4}}}{{{n}_{2}}+{{n}_{4}}}$ $x=\frac{\frac{3{{n}_{1}}}{2}.76+\frac{{{n}_{3}}}{2}.90}{\frac{3{{n}_{1}}}{2}+\frac{{{n}_{3}}}{2}}$ $x=\frac{114{{n}_{1}}+45{{n}_{3}}}{\frac{3{{n}_{1}}+{{n}_{3}}}{2}}$ $x=\frac{2114{{n}_{1}}+45{{n}_{3}}}{3{{n}_{1}}+{{n}_{3}}}$ $x=\frac{2114{{n}_{1}}+ $x=\frac{588{{n}_{1}}}{7{{n}_{1}}}=84$ Jadi, nilai rata-rata ujian siswa perempuan di sekolah A dan B adalah 84. Pernyataan 4 benar. Jawaban C 2 dan 4 benar Baca juga Soal dan Pembahasan Matematika Dasar SIMAK UI 2017. Soal dan Pembahasan Matematika Dasar SIMAK UI 2015. Soal dan Pembahasan Matematika Dasar SIMAK UI 2014. Soal dan Pembahasan Matematika Dasar SIMAK UI 2013. Semoga postingan Pembahasan Soal SIMAK UI 2016 Matematika Dasar ini bisa bermanfaat. Mohon keikhlasan hatinya, membagikan postingan ini di media sosial bapak/ibu guru dan adik-adik sekalian. Terima kasih. RU9x.